Integral of $$$e^{\frac{t}{2}} - \frac{5}{t^{2}}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=e^{\frac{t}{2}} - \frac{5}{t^{2}}$$$:
$${\color{red}{\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x}}} = {\color{red}{x \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)}}$$
Therefore,
$$\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x} = x \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)$$
Simplify:
$$\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x} = x e^{\frac{t}{2}} - \frac{5 x}{t^{2}}$$
Add the constant of integration:
$$\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x} = x e^{\frac{t}{2}} - \frac{5 x}{t^{2}}+C$$
Answer
$$$\int \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)\, dx = \left(x e^{\frac{t}{2}} - \frac{5 x}{t^{2}}\right) + C$$$A