$$$x$$$ değişkenine göre $$$e^{\frac{t}{2}} - \frac{5}{t^{2}}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$e^{\frac{t}{2}} - \frac{5}{t^{2}}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)\, dx$$$.

Çözüm

$$$c=e^{\frac{t}{2}} - \frac{5}{t^{2}}$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$${\color{red}{\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x}}} = {\color{red}{x \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)}}$$

Dolayısıyla,

$$\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x} = x \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)$$

Sadeleştirin:

$$\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x} = x e^{\frac{t}{2}} - \frac{5 x}{t^{2}}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x} = x e^{\frac{t}{2}} - \frac{5 x}{t^{2}}+C$$

Cevap

$$$\int \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)\, dx = \left(x e^{\frac{t}{2}} - \frac{5 x}{t^{2}}\right) + C$$$A


Please try a new game Rotatly