$$$e^{\frac{t}{2}} - \frac{5}{t^{2}}$$$$$$x$$$ 的積分

此計算器會求出 $$$e^{\frac{t}{2}} - \frac{5}{t^{2}}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)\, dx$$$

解答

配合 $$$c=e^{\frac{t}{2}} - \frac{5}{t^{2}}$$$,應用常數法則 $$$\int c\, dx = c x$$$

$${\color{red}{\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x}}} = {\color{red}{x \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)}}$$

因此,

$$\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x} = x \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)$$

化簡:

$$\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x} = x e^{\frac{t}{2}} - \frac{5 x}{t^{2}}$$

加上積分常數:

$$\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x} = x e^{\frac{t}{2}} - \frac{5 x}{t^{2}}+C$$

答案

$$$\int \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)\, dx = \left(x e^{\frac{t}{2}} - \frac{5 x}{t^{2}}\right) + C$$$A


Please try a new game Rotatly