$$$e^{\frac{t}{2}} - \frac{5}{t^{2}}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)\, dx$$$。
解答
配合 $$$c=e^{\frac{t}{2}} - \frac{5}{t^{2}}$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$${\color{red}{\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x}}} = {\color{red}{x \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)}}$$
因此,
$$\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x} = x \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)$$
化簡:
$$\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x} = x e^{\frac{t}{2}} - \frac{5 x}{t^{2}}$$
加上積分常數:
$$\int{\left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)d x} = x e^{\frac{t}{2}} - \frac{5 x}{t^{2}}+C$$
答案
$$$\int \left(e^{\frac{t}{2}} - \frac{5}{t^{2}}\right)\, dx = \left(x e^{\frac{t}{2}} - \frac{5 x}{t^{2}}\right) + C$$$A
Please try a new game Rotatly