Integral of $$$2 e^{x} - 10$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(2 e^{x} - 10\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(2 e^{x} - 10\right)d x}}} = {\color{red}{\left(- \int{10 d x} + \int{2 e^{x} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=10$$$:
$$\int{2 e^{x} d x} - {\color{red}{\int{10 d x}}} = \int{2 e^{x} d x} - {\color{red}{\left(10 x\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = e^{x}$$$:
$$- 10 x + {\color{red}{\int{2 e^{x} d x}}} = - 10 x + {\color{red}{\left(2 \int{e^{x} d x}\right)}}$$
The integral of the exponential function is $$$\int{e^{x} d x} = e^{x}$$$:
$$- 10 x + 2 {\color{red}{\int{e^{x} d x}}} = - 10 x + 2 {\color{red}{e^{x}}}$$
Therefore,
$$\int{\left(2 e^{x} - 10\right)d x} = - 10 x + 2 e^{x}$$
Add the constant of integration:
$$\int{\left(2 e^{x} - 10\right)d x} = - 10 x + 2 e^{x}+C$$
Answer
$$$\int \left(2 e^{x} - 10\right)\, dx = \left(- 10 x + 2 e^{x}\right) + C$$$A