Integral de $$$2 e^{x} - 10$$$

A calculadora encontrará a integral/antiderivada de $$$2 e^{x} - 10$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(2 e^{x} - 10\right)\, dx$$$.

Solução

Integre termo a termo:

$${\color{red}{\int{\left(2 e^{x} - 10\right)d x}}} = {\color{red}{\left(- \int{10 d x} + \int{2 e^{x} d x}\right)}}$$

Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=10$$$:

$$\int{2 e^{x} d x} - {\color{red}{\int{10 d x}}} = \int{2 e^{x} d x} - {\color{red}{\left(10 x\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = e^{x}$$$:

$$- 10 x + {\color{red}{\int{2 e^{x} d x}}} = - 10 x + {\color{red}{\left(2 \int{e^{x} d x}\right)}}$$

A integral da função exponencial é $$$\int{e^{x} d x} = e^{x}$$$:

$$- 10 x + 2 {\color{red}{\int{e^{x} d x}}} = - 10 x + 2 {\color{red}{e^{x}}}$$

Portanto,

$$\int{\left(2 e^{x} - 10\right)d x} = - 10 x + 2 e^{x}$$

Adicione a constante de integração:

$$\int{\left(2 e^{x} - 10\right)d x} = - 10 x + 2 e^{x}+C$$

Resposta

$$$\int \left(2 e^{x} - 10\right)\, dx = \left(- 10 x + 2 e^{x}\right) + C$$$A


Please try a new game Rotatly