Integral dari $$$2 e^{x} - 10$$$

Kalkulator akan menemukan integral/antiturunan dari $$$2 e^{x} - 10$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(2 e^{x} - 10\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(2 e^{x} - 10\right)d x}}} = {\color{red}{\left(- \int{10 d x} + \int{2 e^{x} d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=10$$$:

$$\int{2 e^{x} d x} - {\color{red}{\int{10 d x}}} = \int{2 e^{x} d x} - {\color{red}{\left(10 x\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=2$$$ dan $$$f{\left(x \right)} = e^{x}$$$:

$$- 10 x + {\color{red}{\int{2 e^{x} d x}}} = - 10 x + {\color{red}{\left(2 \int{e^{x} d x}\right)}}$$

Integral dari fungsi eksponensial adalah $$$\int{e^{x} d x} = e^{x}$$$:

$$- 10 x + 2 {\color{red}{\int{e^{x} d x}}} = - 10 x + 2 {\color{red}{e^{x}}}$$

Oleh karena itu,

$$\int{\left(2 e^{x} - 10\right)d x} = - 10 x + 2 e^{x}$$

Tambahkan konstanta integrasi:

$$\int{\left(2 e^{x} - 10\right)d x} = - 10 x + 2 e^{x}+C$$

Jawaban

$$$\int \left(2 e^{x} - 10\right)\, dx = \left(- 10 x + 2 e^{x}\right) + C$$$A


Please try a new game Rotatly