Integral of $$$a^{- n}$$$ with respect to $$$a$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int a^{- n}\, da$$$.
Solution
Apply the power rule $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- n$$$:
$${\color{red}{\int{a^{- n} d a}}}={\color{red}{\frac{a^{1 - n}}{1 - n}}}={\color{red}{\frac{a^{1 - n}}{1 - n}}}$$
Therefore,
$$\int{a^{- n} d a} = \frac{a^{1 - n}}{1 - n}$$
Simplify:
$$\int{a^{- n} d a} = - \frac{a^{1 - n}}{n - 1}$$
Add the constant of integration:
$$\int{a^{- n} d a} = - \frac{a^{1 - n}}{n - 1}+C$$
Answer
$$$\int a^{- n}\, da = - \frac{a^{1 - n}}{n - 1} + C$$$A
Please try a new game Rotatly