Integral of $$$e^{x} - 1$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(e^{x} - 1\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(e^{x} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{e^{x} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$\int{e^{x} d x} - {\color{red}{\int{1 d x}}} = \int{e^{x} d x} - {\color{red}{x}}$$
The integral of the exponential function is $$$\int{e^{x} d x} = e^{x}$$$:
$$- x + {\color{red}{\int{e^{x} d x}}} = - x + {\color{red}{e^{x}}}$$
Therefore,
$$\int{\left(e^{x} - 1\right)d x} = - x + e^{x}$$
Add the constant of integration:
$$\int{\left(e^{x} - 1\right)d x} = - x + e^{x}+C$$
Answer
$$$\int \left(e^{x} - 1\right)\, dx = \left(- x + e^{x}\right) + C$$$A