Limit Calculator

Calculate limits step by step

This free calculator will try to find the limit (two-sided or one-sided, including left and right) of the given function at the given point (including infinity), with steps shown.

Different techniques are used to handle limits (including indeterminate forms): limit laws, rewriting and simplifying, L'Hôpital's rule, rationalizing the denominator, taking natural logarithm, etc.

Enter a function:

Choose a variable:

Find the limit at:

If you need `oo`, type inf.

Choose a direction:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\lim_{x \to \infty} \frac{x + 1}{\sqrt[3]{x^{3} + 1}}$$$

Multiply and divide by $$$x$$$:

$${\color{red}{\lim_{x \to \infty} \frac{x + 1}{\sqrt[3]{x^{3} + 1}}}} = {\color{red}{\lim_{x \to \infty} \frac{x \frac{x + 1}{x}}{x \frac{\sqrt[3]{x^{3} + 1}}{x}}}}$$

Divide:

$${\color{red}{\lim_{x \to \infty} \frac{x \frac{x + 1}{x}}{x \frac{\sqrt[3]{x^{3} + 1}}{x}}}} = {\color{red}{\lim_{x \to \infty} \frac{1 + \frac{1}{x}}{\sqrt[3]{1 + \frac{1}{x^{3}}}}}}$$

The limit of the quotient is the quotient of limits:

$${\color{red}{\lim_{x \to \infty} \frac{1 + \frac{1}{x}}{\sqrt[3]{1 + \frac{1}{x^{3}}}}}} = {\color{red}{\frac{\lim_{x \to \infty}\left(1 + \frac{1}{x}\right)}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}}}$$

The limit of a sum/difference is the sum/difference of limits:

$$\frac{{\color{red}{\lim_{x \to \infty}\left(1 + \frac{1}{x}\right)}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{{\color{red}{\left(\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{1}{x}\right)}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$

The limit of a constant is equal to the constant:

$$\frac{\lim_{x \to \infty} \frac{1}{x} + {\color{red}{\lim_{x \to \infty} 1}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{\lim_{x \to \infty} \frac{1}{x} + {\color{red}{1}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$

The limit of a quotient is the quotient of limits:

$$\frac{1 + {\color{red}{\lim_{x \to \infty} \frac{1}{x}}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{1 + {\color{red}{\frac{\lim_{x \to \infty} 1}{\lim_{x \to \infty} x}}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$

The limit of a constant is equal to the constant:

$$\frac{1 + \frac{{\color{red}{\lim_{x \to \infty} 1}}}{\lim_{x \to \infty} x}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{1 + \frac{{\color{red}{1}}}{\lim_{x \to \infty} x}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$

Constant divided by a very big number equals $$$0$$$:

$$\frac{1 + {\color{red}{1 \frac{1}{\lim_{x \to \infty} x}}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{1 + {\color{red}{\left(0\right)}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$

Move the limit under the power:

$${\color{red}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}}^{-1} = {\color{red}{\sqrt[3]{\lim_{x \to \infty}\left(1 + \frac{1}{x^{3}}\right)}}}^{-1}$$

The limit of a sum/difference is the sum/difference of limits:

$$\frac{1}{\sqrt[3]{{\color{red}{\lim_{x \to \infty}\left(1 + \frac{1}{x^{3}}\right)}}}} = \frac{1}{\sqrt[3]{{\color{red}{\left(\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{1}{x^{3}}\right)}}}}$$

The limit of a constant is equal to the constant:

$$\frac{1}{\sqrt[3]{\lim_{x \to \infty} \frac{1}{x^{3}} + {\color{red}{\lim_{x \to \infty} 1}}}} = \frac{1}{\sqrt[3]{\lim_{x \to \infty} \frac{1}{x^{3}} + {\color{red}{1}}}}$$

The limit of a quotient is the quotient of limits:

$$\frac{1}{\sqrt[3]{1 + {\color{red}{\lim_{x \to \infty} \frac{1}{x^{3}}}}}} = \frac{1}{\sqrt[3]{1 + {\color{red}{\frac{\lim_{x \to \infty} 1}{\lim_{x \to \infty} x^{3}}}}}}$$

The limit of a constant is equal to the constant:

$$\frac{1}{\sqrt[3]{1 + \frac{{\color{red}{\lim_{x \to \infty} 1}}}{\lim_{x \to \infty} x^{3}}}} = \frac{1}{\sqrt[3]{1 + \frac{{\color{red}{1}}}{\lim_{x \to \infty} x^{3}}}}$$

Constant divided by a very big number equals $$$0$$$:

$$\frac{1}{\sqrt[3]{1 + {\color{red}{1 \frac{1}{\lim_{x \to \infty} x^{3}}}}}} = \frac{1}{\sqrt[3]{1 + {\color{red}{\left(0\right)}}}}$$

Therefore,

$$\lim_{x \to \infty} \frac{x + 1}{\sqrt[3]{x^{3} + 1}} = 1$$

Answer: $$$\lim_{x \to \infty} \frac{x + 1}{\sqrt[3]{x^{3} + 1}}=1$$$


Please try a new game Rotatly