$$$\frac{75 i d n t x^{32}}{p^{2}}$$$$$$x$$$ 的積分

此計算器會求出 $$$\frac{75 i d n t x^{32}}{p^{2}}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{75 i d n t x^{32}}{p^{2}}\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{75 i d n t}{p^{2}}$$$$$$f{\left(x \right)} = x^{32}$$$

$${\color{red}{\int{\frac{75 i d n t x^{32}}{p^{2}} d x}}} = {\color{red}{\left(\frac{75 i d n t \int{x^{32} d x}}{p^{2}}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=32$$$

$$\frac{75 i d n t {\color{red}{\int{x^{32} d x}}}}{p^{2}}=\frac{75 i d n t {\color{red}{\frac{x^{1 + 32}}{1 + 32}}}}{p^{2}}=\frac{75 i d n t {\color{red}{\left(\frac{x^{33}}{33}\right)}}}{p^{2}}$$

因此,

$$\int{\frac{75 i d n t x^{32}}{p^{2}} d x} = \frac{25 i d n t x^{33}}{11 p^{2}}$$

加上積分常數:

$$\int{\frac{75 i d n t x^{32}}{p^{2}} d x} = \frac{25 i d n t x^{33}}{11 p^{2}}+C$$

答案

$$$\int \frac{75 i d n t x^{32}}{p^{2}}\, dx = \frac{25 i d n t x^{33}}{11 p^{2}} + C$$$A


Please try a new game Rotatly