Integrale di $$$\frac{75 i d n t x^{32}}{p^{2}}$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{75 i d n t x^{32}}{p^{2}}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{75 i d n t}{p^{2}}$$$ e $$$f{\left(x \right)} = x^{32}$$$:
$${\color{red}{\int{\frac{75 i d n t x^{32}}{p^{2}} d x}}} = {\color{red}{\left(\frac{75 i d n t \int{x^{32} d x}}{p^{2}}\right)}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=32$$$:
$$\frac{75 i d n t {\color{red}{\int{x^{32} d x}}}}{p^{2}}=\frac{75 i d n t {\color{red}{\frac{x^{1 + 32}}{1 + 32}}}}{p^{2}}=\frac{75 i d n t {\color{red}{\left(\frac{x^{33}}{33}\right)}}}{p^{2}}$$
Pertanto,
$$\int{\frac{75 i d n t x^{32}}{p^{2}} d x} = \frac{25 i d n t x^{33}}{11 p^{2}}$$
Aggiungi la costante di integrazione:
$$\int{\frac{75 i d n t x^{32}}{p^{2}} d x} = \frac{25 i d n t x^{33}}{11 p^{2}}+C$$
Risposta
$$$\int \frac{75 i d n t x^{32}}{p^{2}}\, dx = \frac{25 i d n t x^{33}}{11 p^{2}} + C$$$A