$$$\frac{75 i d n t x^{32}}{p^{2}}$$$ 关于$$$x$$$的积分

该计算器将求出$$$\frac{75 i d n t x^{32}}{p^{2}}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{75 i d n t x^{32}}{p^{2}}\, dx$$$

解答

$$$c=\frac{75 i d n t}{p^{2}}$$$$$$f{\left(x \right)} = x^{32}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{75 i d n t x^{32}}{p^{2}} d x}}} = {\color{red}{\left(\frac{75 i d n t \int{x^{32} d x}}{p^{2}}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=32$$$

$$\frac{75 i d n t {\color{red}{\int{x^{32} d x}}}}{p^{2}}=\frac{75 i d n t {\color{red}{\frac{x^{1 + 32}}{1 + 32}}}}{p^{2}}=\frac{75 i d n t {\color{red}{\left(\frac{x^{33}}{33}\right)}}}{p^{2}}$$

因此,

$$\int{\frac{75 i d n t x^{32}}{p^{2}} d x} = \frac{25 i d n t x^{33}}{11 p^{2}}$$

加上积分常数:

$$\int{\frac{75 i d n t x^{32}}{p^{2}} d x} = \frac{25 i d n t x^{33}}{11 p^{2}}+C$$

答案

$$$\int \frac{75 i d n t x^{32}}{p^{2}}\, dx = \frac{25 i d n t x^{33}}{11 p^{2}} + C$$$A


Please try a new game Rotatly