$$$\frac{75 i d n t x^{32}}{p^{2}}$$$ の $$$x$$$ に関する積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{75 i d n t x^{32}}{p^{2}}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{75 i d n t}{p^{2}}$$$ と $$$f{\left(x \right)} = x^{32}$$$ に対して適用する:
$${\color{red}{\int{\frac{75 i d n t x^{32}}{p^{2}} d x}}} = {\color{red}{\left(\frac{75 i d n t \int{x^{32} d x}}{p^{2}}\right)}}$$
$$$n=32$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{75 i d n t {\color{red}{\int{x^{32} d x}}}}{p^{2}}=\frac{75 i d n t {\color{red}{\frac{x^{1 + 32}}{1 + 32}}}}{p^{2}}=\frac{75 i d n t {\color{red}{\left(\frac{x^{33}}{33}\right)}}}{p^{2}}$$
したがって、
$$\int{\frac{75 i d n t x^{32}}{p^{2}} d x} = \frac{25 i d n t x^{33}}{11 p^{2}}$$
積分定数を加える:
$$\int{\frac{75 i d n t x^{32}}{p^{2}} d x} = \frac{25 i d n t x^{33}}{11 p^{2}}+C$$
解答
$$$\int \frac{75 i d n t x^{32}}{p^{2}}\, dx = \frac{25 i d n t x^{33}}{11 p^{2}} + C$$$A