$$$\frac{1}{\left(1 - x\right)^{2}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{\left(1 - x\right)^{2}}\, dx$$$。
解答
令 $$$u=1 - x$$$。
則 $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (步驟見»),並可得 $$$dx = - du$$$。
因此,
$${\color{red}{\int{\frac{1}{\left(1 - x\right)^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:
$${\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u^{2}} d u}\right)}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$:
$$- {\color{red}{\int{\frac{1}{u^{2}} d u}}}=- {\color{red}{\int{u^{-2} d u}}}=- {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=- {\color{red}{\left(- u^{-1}\right)}}=- {\color{red}{\left(- \frac{1}{u}\right)}}$$
回顧一下 $$$u=1 - x$$$:
$${\color{red}{u}}^{-1} = {\color{red}{\left(1 - x\right)}}^{-1}$$
因此,
$$\int{\frac{1}{\left(1 - x\right)^{2}} d x} = \frac{1}{1 - x}$$
化簡:
$$\int{\frac{1}{\left(1 - x\right)^{2}} d x} = - \frac{1}{x - 1}$$
加上積分常數:
$$\int{\frac{1}{\left(1 - x\right)^{2}} d x} = - \frac{1}{x - 1}+C$$
答案
$$$\int \frac{1}{\left(1 - x\right)^{2}}\, dx = - \frac{1}{x - 1} + C$$$A