Integral of $$$\frac{1}{\left(1 - x\right)^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{\left(1 - x\right)^{2}}\, dx$$$.
Solution
Let $$$u=1 - x$$$.
Then $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.
The integral becomes
$${\color{red}{\int{\frac{1}{\left(1 - x\right)^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:
$${\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u^{2}} d u}\right)}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:
$$- {\color{red}{\int{\frac{1}{u^{2}} d u}}}=- {\color{red}{\int{u^{-2} d u}}}=- {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=- {\color{red}{\left(- u^{-1}\right)}}=- {\color{red}{\left(- \frac{1}{u}\right)}}$$
Recall that $$$u=1 - x$$$:
$${\color{red}{u}}^{-1} = {\color{red}{\left(1 - x\right)}}^{-1}$$
Therefore,
$$\int{\frac{1}{\left(1 - x\right)^{2}} d x} = \frac{1}{1 - x}$$
Simplify:
$$\int{\frac{1}{\left(1 - x\right)^{2}} d x} = - \frac{1}{x - 1}$$
Add the constant of integration:
$$\int{\frac{1}{\left(1 - x\right)^{2}} d x} = - \frac{1}{x - 1}+C$$
Answer
$$$\int \frac{1}{\left(1 - x\right)^{2}}\, dx = - \frac{1}{x - 1} + C$$$A