$$$a m x^{3} e^{- l}$$$$$$a$$$ 的積分

此計算器會求出 $$$a m x^{3} e^{- l}$$$$$$a$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int a m x^{3} e^{- l}\, da$$$

解答

套用常數倍法則 $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$,使用 $$$c=m x^{3} e^{- l}$$$$$$f{\left(a \right)} = a$$$

$${\color{red}{\int{a m x^{3} e^{- l} d a}}} = {\color{red}{m x^{3} e^{- l} \int{a d a}}}$$

套用冪次法則 $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$m x^{3} e^{- l} {\color{red}{\int{a d a}}}=m x^{3} e^{- l} {\color{red}{\frac{a^{1 + 1}}{1 + 1}}}=m x^{3} e^{- l} {\color{red}{\left(\frac{a^{2}}{2}\right)}}$$

因此,

$$\int{a m x^{3} e^{- l} d a} = \frac{a^{2} m x^{3} e^{- l}}{2}$$

加上積分常數:

$$\int{a m x^{3} e^{- l} d a} = \frac{a^{2} m x^{3} e^{- l}}{2}+C$$

答案

$$$\int a m x^{3} e^{- l}\, da = \frac{a^{2} m x^{3} e^{- l}}{2} + C$$$A


Please try a new game Rotatly