$$$x^{2} \sin{\left(n x \right)}$$$$$$x$$$ 的積分

此計算器會求出 $$$x^{2} \sin{\left(n x \right)}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int x^{2} \sin{\left(n x \right)}\, dx$$$

解答

對於積分 $$$\int{x^{2} \sin{\left(n x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x^{2}$$$$$$\operatorname{dv}=\sin{\left(n x \right)} dx$$$

$$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{\sin{\left(n x \right)} d x}=- \frac{\cos{\left(n x \right)}}{n}$$$(步驟見 »)。

所以,

$${\color{red}{\int{x^{2} \sin{\left(n x \right)} d x}}}={\color{red}{\left(x^{2} \cdot \left(- \frac{\cos{\left(n x \right)}}{n}\right)-\int{\left(- \frac{\cos{\left(n x \right)}}{n}\right) \cdot 2 x d x}\right)}}={\color{red}{\left(- \int{\left(- \frac{2 x \cos{\left(n x \right)}}{n}\right)d x} - \frac{x^{2} \cos{\left(n x \right)}}{n}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- \frac{2}{n}$$$$$$f{\left(x \right)} = x \cos{\left(n x \right)}$$$

$$- {\color{red}{\int{\left(- \frac{2 x \cos{\left(n x \right)}}{n}\right)d x}}} - \frac{x^{2} \cos{\left(n x \right)}}{n} = - {\color{red}{\left(- \frac{2 \int{x \cos{\left(n x \right)} d x}}{n}\right)}} - \frac{x^{2} \cos{\left(n x \right)}}{n}$$

對於積分 $$$\int{x \cos{\left(n x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=\cos{\left(n x \right)} dx$$$

$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{\cos{\left(n x \right)} d x}=\frac{\sin{\left(n x \right)}}{n}$$$(步驟見 »)。

所以,

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 {\color{red}{\int{x \cos{\left(n x \right)} d x}}}}{n}=- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 {\color{red}{\left(x \cdot \frac{\sin{\left(n x \right)}}{n}-\int{\frac{\sin{\left(n x \right)}}{n} \cdot 1 d x}\right)}}}{n}=- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 {\color{red}{\left(- \int{\frac{\sin{\left(n x \right)}}{n} d x} + \frac{x \sin{\left(n x \right)}}{n}\right)}}}{n}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{n}$$$$$$f{\left(x \right)} = \sin{\left(n x \right)}$$$

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(- {\color{red}{\int{\frac{\sin{\left(n x \right)}}{n} d x}}} + \frac{x \sin{\left(n x \right)}}{n}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(- {\color{red}{\frac{\int{\sin{\left(n x \right)} d x}}{n}}} + \frac{x \sin{\left(n x \right)}}{n}\right)}{n}$$

$$$u=n x$$$

$$$du=\left(n x\right)^{\prime }dx = n dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{n}$$$

該積分可改寫為

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\sin{\left(n x \right)} d x}}}}{n}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}}}{n}\right)}{n}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{n}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}}}{n}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{n}}}}{n}\right)}{n}$$

正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{n^{2}}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{n^{2}}\right)}{n}$$

回顧一下 $$$u=n x$$$

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} + \frac{\cos{\left({\color{red}{u}} \right)}}{n^{2}}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} + \frac{\cos{\left({\color{red}{n x}} \right)}}{n^{2}}\right)}{n}$$

因此,

$$\int{x^{2} \sin{\left(n x \right)} d x} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} + \frac{\cos{\left(n x \right)}}{n^{2}}\right)}{n}$$

化簡:

$$\int{x^{2} \sin{\left(n x \right)} d x} = \frac{- n^{2} x^{2} \cos{\left(n x \right)} + 2 n x \sin{\left(n x \right)} + 2 \cos{\left(n x \right)}}{n^{3}}$$

加上積分常數:

$$\int{x^{2} \sin{\left(n x \right)} d x} = \frac{- n^{2} x^{2} \cos{\left(n x \right)} + 2 n x \sin{\left(n x \right)} + 2 \cos{\left(n x \right)}}{n^{3}}+C$$

答案

$$$\int x^{2} \sin{\left(n x \right)}\, dx = \frac{- n^{2} x^{2} \cos{\left(n x \right)} + 2 n x \sin{\left(n x \right)} + 2 \cos{\left(n x \right)}}{n^{3}} + C$$$A


Please try a new game Rotatly