$$$x^{2} \sin{\left(n x \right)}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$x^{2} \sin{\left(n x \right)}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int x^{2} \sin{\left(n x \right)}\, dx$$$ を求めよ。

解答

積分 $$$\int{x^{2} \sin{\left(n x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=x^{2}$$$$$$\operatorname{dv}=\sin{\left(n x \right)} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{\sin{\left(n x \right)} d x}=- \frac{\cos{\left(n x \right)}}{n}$$$(手順は»を参照)。

したがって、

$${\color{red}{\int{x^{2} \sin{\left(n x \right)} d x}}}={\color{red}{\left(x^{2} \cdot \left(- \frac{\cos{\left(n x \right)}}{n}\right)-\int{\left(- \frac{\cos{\left(n x \right)}}{n}\right) \cdot 2 x d x}\right)}}={\color{red}{\left(- \int{\left(- \frac{2 x \cos{\left(n x \right)}}{n}\right)d x} - \frac{x^{2} \cos{\left(n x \right)}}{n}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=- \frac{2}{n}$$$$$$f{\left(x \right)} = x \cos{\left(n x \right)}$$$ に対して適用する:

$$- {\color{red}{\int{\left(- \frac{2 x \cos{\left(n x \right)}}{n}\right)d x}}} - \frac{x^{2} \cos{\left(n x \right)}}{n} = - {\color{red}{\left(- \frac{2 \int{x \cos{\left(n x \right)} d x}}{n}\right)}} - \frac{x^{2} \cos{\left(n x \right)}}{n}$$

積分 $$$\int{x \cos{\left(n x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=\cos{\left(n x \right)} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{\cos{\left(n x \right)} d x}=\frac{\sin{\left(n x \right)}}{n}$$$(手順は»を参照)。

したがって、

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 {\color{red}{\int{x \cos{\left(n x \right)} d x}}}}{n}=- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 {\color{red}{\left(x \cdot \frac{\sin{\left(n x \right)}}{n}-\int{\frac{\sin{\left(n x \right)}}{n} \cdot 1 d x}\right)}}}{n}=- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 {\color{red}{\left(- \int{\frac{\sin{\left(n x \right)}}{n} d x} + \frac{x \sin{\left(n x \right)}}{n}\right)}}}{n}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{n}$$$$$$f{\left(x \right)} = \sin{\left(n x \right)}$$$ に対して適用する:

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(- {\color{red}{\int{\frac{\sin{\left(n x \right)}}{n} d x}}} + \frac{x \sin{\left(n x \right)}}{n}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(- {\color{red}{\frac{\int{\sin{\left(n x \right)} d x}}{n}}} + \frac{x \sin{\left(n x \right)}}{n}\right)}{n}$$

$$$u=n x$$$ とする。

すると $$$du=\left(n x\right)^{\prime }dx = n dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{n}$$$ となります。

したがって、

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\sin{\left(n x \right)} d x}}}}{n}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}}}{n}\right)}{n}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{n}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$ に対して適用する:

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}}}{n}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{n}}}}{n}\right)}{n}$$

正弦関数の不定積分は$$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$です:

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{n^{2}}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{n^{2}}\right)}{n}$$

次のことを思い出してください $$$u=n x$$$:

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} + \frac{\cos{\left({\color{red}{u}} \right)}}{n^{2}}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} + \frac{\cos{\left({\color{red}{n x}} \right)}}{n^{2}}\right)}{n}$$

したがって、

$$\int{x^{2} \sin{\left(n x \right)} d x} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} + \frac{\cos{\left(n x \right)}}{n^{2}}\right)}{n}$$

簡単化せよ:

$$\int{x^{2} \sin{\left(n x \right)} d x} = \frac{- n^{2} x^{2} \cos{\left(n x \right)} + 2 n x \sin{\left(n x \right)} + 2 \cos{\left(n x \right)}}{n^{3}}$$

積分定数を加える:

$$\int{x^{2} \sin{\left(n x \right)} d x} = \frac{- n^{2} x^{2} \cos{\left(n x \right)} + 2 n x \sin{\left(n x \right)} + 2 \cos{\left(n x \right)}}{n^{3}}+C$$

解答

$$$\int x^{2} \sin{\left(n x \right)}\, dx = \frac{- n^{2} x^{2} \cos{\left(n x \right)} + 2 n x \sin{\left(n x \right)} + 2 \cos{\left(n x \right)}}{n^{3}} + C$$$A


Please try a new game Rotatly