$$$x$$$ değişkenine göre $$$x^{2} \sin{\left(n x \right)}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$x^{2} \sin{\left(n x \right)}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int x^{2} \sin{\left(n x \right)}\, dx$$$.

Çözüm

$$$\int{x^{2} \sin{\left(n x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=x^{2}$$$ ve $$$\operatorname{dv}=\sin{\left(n x \right)} dx$$$ olsun.

O halde $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{\sin{\left(n x \right)} d x}=- \frac{\cos{\left(n x \right)}}{n}$$$ (adımlar için bkz. »).

İntegral şu şekilde yeniden yazılabilir:

$${\color{red}{\int{x^{2} \sin{\left(n x \right)} d x}}}={\color{red}{\left(x^{2} \cdot \left(- \frac{\cos{\left(n x \right)}}{n}\right)-\int{\left(- \frac{\cos{\left(n x \right)}}{n}\right) \cdot 2 x d x}\right)}}={\color{red}{\left(- \int{\left(- \frac{2 x \cos{\left(n x \right)}}{n}\right)d x} - \frac{x^{2} \cos{\left(n x \right)}}{n}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=- \frac{2}{n}$$$ ve $$$f{\left(x \right)} = x \cos{\left(n x \right)}$$$ ile uygula:

$$- {\color{red}{\int{\left(- \frac{2 x \cos{\left(n x \right)}}{n}\right)d x}}} - \frac{x^{2} \cos{\left(n x \right)}}{n} = - {\color{red}{\left(- \frac{2 \int{x \cos{\left(n x \right)} d x}}{n}\right)}} - \frac{x^{2} \cos{\left(n x \right)}}{n}$$

$$$\int{x \cos{\left(n x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=x$$$ ve $$$\operatorname{dv}=\cos{\left(n x \right)} dx$$$ olsun.

O halde $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{\cos{\left(n x \right)} d x}=\frac{\sin{\left(n x \right)}}{n}$$$ (adımlar için bkz. »).

O halde,

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 {\color{red}{\int{x \cos{\left(n x \right)} d x}}}}{n}=- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 {\color{red}{\left(x \cdot \frac{\sin{\left(n x \right)}}{n}-\int{\frac{\sin{\left(n x \right)}}{n} \cdot 1 d x}\right)}}}{n}=- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 {\color{red}{\left(- \int{\frac{\sin{\left(n x \right)}}{n} d x} + \frac{x \sin{\left(n x \right)}}{n}\right)}}}{n}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{n}$$$ ve $$$f{\left(x \right)} = \sin{\left(n x \right)}$$$ ile uygula:

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(- {\color{red}{\int{\frac{\sin{\left(n x \right)}}{n} d x}}} + \frac{x \sin{\left(n x \right)}}{n}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(- {\color{red}{\frac{\int{\sin{\left(n x \right)} d x}}{n}}} + \frac{x \sin{\left(n x \right)}}{n}\right)}{n}$$

$$$u=n x$$$ olsun.

Böylece $$$du=\left(n x\right)^{\prime }dx = n dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{n}$$$ elde ederiz.

İntegral şu hale gelir

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\sin{\left(n x \right)} d x}}}}{n}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}}}{n}\right)}{n}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{n}$$$ ve $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ile uygula:

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}}}{n}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{n}}}}{n}\right)}{n}$$

Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{n^{2}}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{n^{2}}\right)}{n}$$

Hatırlayın ki $$$u=n x$$$:

$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} + \frac{\cos{\left({\color{red}{u}} \right)}}{n^{2}}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} + \frac{\cos{\left({\color{red}{n x}} \right)}}{n^{2}}\right)}{n}$$

Dolayısıyla,

$$\int{x^{2} \sin{\left(n x \right)} d x} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} + \frac{\cos{\left(n x \right)}}{n^{2}}\right)}{n}$$

Sadeleştirin:

$$\int{x^{2} \sin{\left(n x \right)} d x} = \frac{- n^{2} x^{2} \cos{\left(n x \right)} + 2 n x \sin{\left(n x \right)} + 2 \cos{\left(n x \right)}}{n^{3}}$$

İntegrasyon sabitini ekleyin:

$$\int{x^{2} \sin{\left(n x \right)} d x} = \frac{- n^{2} x^{2} \cos{\left(n x \right)} + 2 n x \sin{\left(n x \right)} + 2 \cos{\left(n x \right)}}{n^{3}}+C$$

Cevap

$$$\int x^{2} \sin{\left(n x \right)}\, dx = \frac{- n^{2} x^{2} \cos{\left(n x \right)} + 2 n x \sin{\left(n x \right)} + 2 \cos{\left(n x \right)}}{n^{3}} + C$$$A


Please try a new game Rotatly