Intégrale de $$$x^{2} \sin{\left(n x \right)}$$$ par rapport à $$$x$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int x^{2} \sin{\left(n x \right)}\, dx$$$.
Solution
Pour l’intégrale $$$\int{x^{2} \sin{\left(n x \right)} d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=x^{2}$$$ et $$$\operatorname{dv}=\sin{\left(n x \right)} dx$$$.
Donc $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{\sin{\left(n x \right)} d x}=- \frac{\cos{\left(n x \right)}}{n}$$$ (les étapes peuvent être consultées »).
L’intégrale devient
$${\color{red}{\int{x^{2} \sin{\left(n x \right)} d x}}}={\color{red}{\left(x^{2} \cdot \left(- \frac{\cos{\left(n x \right)}}{n}\right)-\int{\left(- \frac{\cos{\left(n x \right)}}{n}\right) \cdot 2 x d x}\right)}}={\color{red}{\left(- \int{\left(- \frac{2 x \cos{\left(n x \right)}}{n}\right)d x} - \frac{x^{2} \cos{\left(n x \right)}}{n}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=- \frac{2}{n}$$$ et $$$f{\left(x \right)} = x \cos{\left(n x \right)}$$$ :
$$- {\color{red}{\int{\left(- \frac{2 x \cos{\left(n x \right)}}{n}\right)d x}}} - \frac{x^{2} \cos{\left(n x \right)}}{n} = - {\color{red}{\left(- \frac{2 \int{x \cos{\left(n x \right)} d x}}{n}\right)}} - \frac{x^{2} \cos{\left(n x \right)}}{n}$$
Pour l’intégrale $$$\int{x \cos{\left(n x \right)} d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=x$$$ et $$$\operatorname{dv}=\cos{\left(n x \right)} dx$$$.
Donc $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{\cos{\left(n x \right)} d x}=\frac{\sin{\left(n x \right)}}{n}$$$ (les étapes peuvent être consultées »).
L’intégrale peut être réécrite sous la forme
$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 {\color{red}{\int{x \cos{\left(n x \right)} d x}}}}{n}=- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 {\color{red}{\left(x \cdot \frac{\sin{\left(n x \right)}}{n}-\int{\frac{\sin{\left(n x \right)}}{n} \cdot 1 d x}\right)}}}{n}=- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 {\color{red}{\left(- \int{\frac{\sin{\left(n x \right)}}{n} d x} + \frac{x \sin{\left(n x \right)}}{n}\right)}}}{n}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{n}$$$ et $$$f{\left(x \right)} = \sin{\left(n x \right)}$$$ :
$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(- {\color{red}{\int{\frac{\sin{\left(n x \right)}}{n} d x}}} + \frac{x \sin{\left(n x \right)}}{n}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(- {\color{red}{\frac{\int{\sin{\left(n x \right)} d x}}{n}}} + \frac{x \sin{\left(n x \right)}}{n}\right)}{n}$$
Soit $$$u=n x$$$.
Alors $$$du=\left(n x\right)^{\prime }dx = n dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{n}$$$.
L’intégrale peut être réécrite sous la forme
$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\sin{\left(n x \right)} d x}}}}{n}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}}}{n}\right)}{n}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{n}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :
$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}}}{n}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{n}}}}{n}\right)}{n}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{n^{2}}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{n^{2}}\right)}{n}$$
Rappelons que $$$u=n x$$$ :
$$- \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} + \frac{\cos{\left({\color{red}{u}} \right)}}{n^{2}}\right)}{n} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} + \frac{\cos{\left({\color{red}{n x}} \right)}}{n^{2}}\right)}{n}$$
Par conséquent,
$$\int{x^{2} \sin{\left(n x \right)} d x} = - \frac{x^{2} \cos{\left(n x \right)}}{n} + \frac{2 \left(\frac{x \sin{\left(n x \right)}}{n} + \frac{\cos{\left(n x \right)}}{n^{2}}\right)}{n}$$
Simplifier:
$$\int{x^{2} \sin{\left(n x \right)} d x} = \frac{- n^{2} x^{2} \cos{\left(n x \right)} + 2 n x \sin{\left(n x \right)} + 2 \cos{\left(n x \right)}}{n^{3}}$$
Ajouter la constante d'intégration :
$$\int{x^{2} \sin{\left(n x \right)} d x} = \frac{- n^{2} x^{2} \cos{\left(n x \right)} + 2 n x \sin{\left(n x \right)} + 2 \cos{\left(n x \right)}}{n^{3}}+C$$
Réponse
$$$\int x^{2} \sin{\left(n x \right)}\, dx = \frac{- n^{2} x^{2} \cos{\left(n x \right)} + 2 n x \sin{\left(n x \right)} + 2 \cos{\left(n x \right)}}{n^{3}} + C$$$A