$$$\frac{1}{2 u}$$$ 的積分
您的輸入
求$$$\int \frac{1}{2 u}\, du$$$。
解答
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\frac{1}{2 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
因此,
$$\int{\frac{1}{2 u} d u} = \frac{\ln{\left(\left|{u}\right| \right)}}{2}$$
加上積分常數:
$$\int{\frac{1}{2 u} d u} = \frac{\ln{\left(\left|{u}\right| \right)}}{2}+C$$
答案
$$$\int \frac{1}{2 u}\, du = \frac{\ln\left(\left|{u}\right|\right)}{2} + C$$$A
Please try a new game Rotatly