Integral de $$$\frac{1}{2 u}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{2 u}\, du$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\frac{1}{2 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$
La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Por lo tanto,
$$\int{\frac{1}{2 u} d u} = \frac{\ln{\left(\left|{u}\right| \right)}}{2}$$
Añade la constante de integración:
$$\int{\frac{1}{2 u} d u} = \frac{\ln{\left(\left|{u}\right| \right)}}{2}+C$$
Respuesta
$$$\int \frac{1}{2 u}\, du = \frac{\ln\left(\left|{u}\right|\right)}{2} + C$$$A