$$$\tan{\left(\theta \right)}$$$ 的積分
您的輸入
求$$$\int \tan{\left(\theta \right)}\, d\theta$$$。
解答
將切線改寫為 $$$\tan\left(\theta\right)=\frac{\sin\left(\theta\right)}{\cos\left(\theta\right)}$$$:
$${\color{red}{\int{\tan{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\frac{\sin{\left(\theta \right)}}{\cos{\left(\theta \right)}} d \theta}}}$$
令 $$$u=\cos{\left(\theta \right)}$$$。
則 $$$du=\left(\cos{\left(\theta \right)}\right)^{\prime }d\theta = - \sin{\left(\theta \right)} d\theta$$$ (步驟見»),並可得 $$$\sin{\left(\theta \right)} d\theta = - du$$$。
因此,
$${\color{red}{\int{\frac{\sin{\left(\theta \right)}}{\cos{\left(\theta \right)}} d \theta}}} = {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{u} d u}}} = - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回顧一下 $$$u=\cos{\left(\theta \right)}$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\cos{\left(\theta \right)}}}}\right| \right)}$$
因此,
$$\int{\tan{\left(\theta \right)} d \theta} = - \ln{\left(\left|{\cos{\left(\theta \right)}}\right| \right)}$$
加上積分常數:
$$\int{\tan{\left(\theta \right)} d \theta} = - \ln{\left(\left|{\cos{\left(\theta \right)}}\right| \right)}+C$$
答案
$$$\int \tan{\left(\theta \right)}\, d\theta = - \ln\left(\left|{\cos{\left(\theta \right)}}\right|\right) + C$$$A