Integrale di $$$\tan{\left(\theta \right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \tan{\left(\theta \right)}\, d\theta$$$.
Soluzione
Riescrivi la tangente come $$$\tan\left(\theta\right)=\frac{\sin\left(\theta\right)}{\cos\left(\theta\right)}$$$:
$${\color{red}{\int{\tan{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\frac{\sin{\left(\theta \right)}}{\cos{\left(\theta \right)}} d \theta}}}$$
Sia $$$u=\cos{\left(\theta \right)}$$$.
Quindi $$$du=\left(\cos{\left(\theta \right)}\right)^{\prime }d\theta = - \sin{\left(\theta \right)} d\theta$$$ (i passaggi si possono vedere »), e si ha che $$$\sin{\left(\theta \right)} d\theta = - du$$$.
Quindi,
$${\color{red}{\int{\frac{\sin{\left(\theta \right)}}{\cos{\left(\theta \right)}} d \theta}}} = {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{u} d u}}} = - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Ricordiamo che $$$u=\cos{\left(\theta \right)}$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\cos{\left(\theta \right)}}}}\right| \right)}$$
Pertanto,
$$\int{\tan{\left(\theta \right)} d \theta} = - \ln{\left(\left|{\cos{\left(\theta \right)}}\right| \right)}$$
Aggiungi la costante di integrazione:
$$\int{\tan{\left(\theta \right)} d \theta} = - \ln{\left(\left|{\cos{\left(\theta \right)}}\right| \right)}+C$$
Risposta
$$$\int \tan{\left(\theta \right)}\, d\theta = - \ln\left(\left|{\cos{\left(\theta \right)}}\right|\right) + C$$$A