Integral of $$$\tan{\left(\theta \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \tan{\left(\theta \right)}\, d\theta$$$.
Solution
Rewrite the tangent as $$$\tan\left(\theta\right)=\frac{\sin\left(\theta\right)}{\cos\left(\theta\right)}$$$:
$${\color{red}{\int{\tan{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\frac{\sin{\left(\theta \right)}}{\cos{\left(\theta \right)}} d \theta}}}$$
Let $$$u=\cos{\left(\theta \right)}$$$.
Then $$$du=\left(\cos{\left(\theta \right)}\right)^{\prime }d\theta = - \sin{\left(\theta \right)} d\theta$$$ (steps can be seen »), and we have that $$$\sin{\left(\theta \right)} d\theta = - du$$$.
The integral becomes
$${\color{red}{\int{\frac{\sin{\left(\theta \right)}}{\cos{\left(\theta \right)}} d \theta}}} = {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{u} d u}}} = - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=\cos{\left(\theta \right)}$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\cos{\left(\theta \right)}}}}\right| \right)}$$
Therefore,
$$\int{\tan{\left(\theta \right)} d \theta} = - \ln{\left(\left|{\cos{\left(\theta \right)}}\right| \right)}$$
Add the constant of integration:
$$\int{\tan{\left(\theta \right)} d \theta} = - \ln{\left(\left|{\cos{\left(\theta \right)}}\right| \right)}+C$$
Answer
$$$\int \tan{\left(\theta \right)}\, d\theta = - \ln\left(\left|{\cos{\left(\theta \right)}}\right|\right) + C$$$A