$$$\sqrt{x^{3}}$$$ 的積分
您的輸入
求$$$\int \sqrt{x^{3}}\, dx$$$。
解答
已將輸入重寫為:$$$\int{\sqrt{x^{3}} d x}=\int{x^{\frac{3}{2}} d x}$$$。
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=\frac{3}{2}$$$:
$${\color{red}{\int{x^{\frac{3}{2}} d x}}}={\color{red}{\frac{x^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}={\color{red}{\left(\frac{2 x^{\frac{5}{2}}}{5}\right)}}$$
因此,
$$\int{x^{\frac{3}{2}} d x} = \frac{2 x^{\frac{5}{2}}}{5}$$
加上積分常數:
$$\int{x^{\frac{3}{2}} d x} = \frac{2 x^{\frac{5}{2}}}{5}+C$$
答案
$$$\int \sqrt{x^{3}}\, dx = \frac{2 x^{\frac{5}{2}}}{5} + C$$$A
Please try a new game Rotatly