$$$\sqrt{\frac{1}{a x}}$$$$$$x$$$ 的積分

此計算器會求出 $$$\sqrt{\frac{1}{a x}}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \sqrt{\frac{1}{a x}}\, dx$$$

解答

已將輸入重寫為:$$$\int{\sqrt{\frac{1}{a x}} d x}=\int{\frac{1}{\sqrt{a} \sqrt{x}} d x}$$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{\sqrt{a}}$$$$$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$

$${\color{red}{\int{\frac{1}{\sqrt{a} \sqrt{x}} d x}}} = {\color{red}{\frac{\int{\frac{1}{\sqrt{x}} d x}}{\sqrt{a}}}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=- \frac{1}{2}$$$

$$\frac{{\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}}{\sqrt{a}}=\frac{{\color{red}{\int{x^{- \frac{1}{2}} d x}}}}{\sqrt{a}}=\frac{{\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{\sqrt{a}}=\frac{{\color{red}{\left(2 x^{\frac{1}{2}}\right)}}}{\sqrt{a}}=\frac{{\color{red}{\left(2 \sqrt{x}\right)}}}{\sqrt{a}}$$

因此,

$$\int{\frac{1}{\sqrt{a} \sqrt{x}} d x} = \frac{2 \sqrt{x}}{\sqrt{a}}$$

加上積分常數:

$$\int{\frac{1}{\sqrt{a} \sqrt{x}} d x} = \frac{2 \sqrt{x}}{\sqrt{a}}+C$$

答案

$$$\int \sqrt{\frac{1}{a x}}\, dx = \frac{2 \sqrt{x}}{\sqrt{a}} + C$$$A


Please try a new game Rotatly