Integral of $$$\sqrt{\frac{1}{a x}}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sqrt{\frac{1}{a x}}\, dx$$$.
Solution
The input is rewritten: $$$\int{\sqrt{\frac{1}{a x}} d x}=\int{\frac{1}{\sqrt{a} \sqrt{x}} d x}$$$.
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{\sqrt{a}}$$$ and $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$:
$${\color{red}{\int{\frac{1}{\sqrt{a} \sqrt{x}} d x}}} = {\color{red}{\frac{\int{\frac{1}{\sqrt{x}} d x}}{\sqrt{a}}}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \frac{1}{2}$$$:
$$\frac{{\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}}{\sqrt{a}}=\frac{{\color{red}{\int{x^{- \frac{1}{2}} d x}}}}{\sqrt{a}}=\frac{{\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{\sqrt{a}}=\frac{{\color{red}{\left(2 x^{\frac{1}{2}}\right)}}}{\sqrt{a}}=\frac{{\color{red}{\left(2 \sqrt{x}\right)}}}{\sqrt{a}}$$
Therefore,
$$\int{\frac{1}{\sqrt{a} \sqrt{x}} d x} = \frac{2 \sqrt{x}}{\sqrt{a}}$$
Add the constant of integration:
$$\int{\frac{1}{\sqrt{a} \sqrt{x}} d x} = \frac{2 \sqrt{x}}{\sqrt{a}}+C$$
Answer
$$$\int \sqrt{\frac{1}{a x}}\, dx = \frac{2 \sqrt{x}}{\sqrt{a}} + C$$$A