Integrale di $$$\sqrt{\frac{1}{a x}}$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \sqrt{\frac{1}{a x}}\, dx$$$.
Soluzione
L'input viene riscritto: $$$\int{\sqrt{\frac{1}{a x}} d x}=\int{\frac{1}{\sqrt{a} \sqrt{x}} d x}$$$.
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{\sqrt{a}}$$$ e $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$:
$${\color{red}{\int{\frac{1}{\sqrt{a} \sqrt{x}} d x}}} = {\color{red}{\frac{\int{\frac{1}{\sqrt{x}} d x}}{\sqrt{a}}}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=- \frac{1}{2}$$$:
$$\frac{{\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}}{\sqrt{a}}=\frac{{\color{red}{\int{x^{- \frac{1}{2}} d x}}}}{\sqrt{a}}=\frac{{\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{\sqrt{a}}=\frac{{\color{red}{\left(2 x^{\frac{1}{2}}\right)}}}{\sqrt{a}}=\frac{{\color{red}{\left(2 \sqrt{x}\right)}}}{\sqrt{a}}$$
Pertanto,
$$\int{\frac{1}{\sqrt{a} \sqrt{x}} d x} = \frac{2 \sqrt{x}}{\sqrt{a}}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{\sqrt{a} \sqrt{x}} d x} = \frac{2 \sqrt{x}}{\sqrt{a}}+C$$
Risposta
$$$\int \sqrt{\frac{1}{a x}}\, dx = \frac{2 \sqrt{x}}{\sqrt{a}} + C$$$A