$$$e^{\cos{\left(y \right)}} \sin{\left(y \right)}$$$ 的積分
您的輸入
求$$$\int e^{\cos{\left(y \right)}} \sin{\left(y \right)}\, dy$$$。
解答
令 $$$u=\cos{\left(y \right)}$$$。
則 $$$du=\left(\cos{\left(y \right)}\right)^{\prime }dy = - \sin{\left(y \right)} dy$$$ (步驟見»),並可得 $$$\sin{\left(y \right)} dy = - du$$$。
該積分可改寫為
$${\color{red}{\int{e^{\cos{\left(y \right)}} \sin{\left(y \right)} d y}}} = {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\left(- e^{u}\right)d u}}} = {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$$- {\color{red}{\int{e^{u} d u}}} = - {\color{red}{e^{u}}}$$
回顧一下 $$$u=\cos{\left(y \right)}$$$:
$$- e^{{\color{red}{u}}} = - e^{{\color{red}{\cos{\left(y \right)}}}}$$
因此,
$$\int{e^{\cos{\left(y \right)}} \sin{\left(y \right)} d y} = - e^{\cos{\left(y \right)}}$$
加上積分常數:
$$\int{e^{\cos{\left(y \right)}} \sin{\left(y \right)} d y} = - e^{\cos{\left(y \right)}}+C$$
答案
$$$\int e^{\cos{\left(y \right)}} \sin{\left(y \right)}\, dy = - e^{\cos{\left(y \right)}} + C$$$A