$$$e^{x^{2}} - 1$$$ 的積分

此計算器將求出 $$$e^{x^{2}} - 1$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(e^{x^{2}} - 1\right)\, dx$$$

解答

逐項積分:

$${\color{red}{\int{\left(e^{x^{2}} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{e^{x^{2}} d x}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$

$$\int{e^{x^{2}} d x} - {\color{red}{\int{1 d x}}} = \int{e^{x^{2}} d x} - {\color{red}{x}}$$

此積分(虛誤差函數)不存在閉式表示:

$$- x + {\color{red}{\int{e^{x^{2}} d x}}} = - x + {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}\right)}}$$

因此,

$$\int{\left(e^{x^{2}} - 1\right)d x} = - x + \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}$$

加上積分常數:

$$\int{\left(e^{x^{2}} - 1\right)d x} = - x + \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}+C$$

答案

$$$\int \left(e^{x^{2}} - 1\right)\, dx = \left(- x + \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly