Integrale di $$$e^{x^{2}} - 1$$$

La calcolatrice troverà l'integrale/primitiva di $$$e^{x^{2}} - 1$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(e^{x^{2}} - 1\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(e^{x^{2}} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{e^{x^{2}} d x}\right)}}$$

Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$\int{e^{x^{2}} d x} - {\color{red}{\int{1 d x}}} = \int{e^{x^{2}} d x} - {\color{red}{x}}$$

Questo integrale (Funzione di errore immaginaria) non ha una forma chiusa:

$$- x + {\color{red}{\int{e^{x^{2}} d x}}} = - x + {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}\right)}}$$

Pertanto,

$$\int{\left(e^{x^{2}} - 1\right)d x} = - x + \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{\left(e^{x^{2}} - 1\right)d x} = - x + \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}+C$$

Risposta

$$$\int \left(e^{x^{2}} - 1\right)\, dx = \left(- x + \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly