Intégrale de $$$e^{x^{2}} - 1$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(e^{x^{2}} - 1\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(e^{x^{2}} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{e^{x^{2}} d x}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dx = c x$$$ avec $$$c=1$$$:
$$\int{e^{x^{2}} d x} - {\color{red}{\int{1 d x}}} = \int{e^{x^{2}} d x} - {\color{red}{x}}$$
Cette intégrale (Fonction d'erreur imaginaire) n’admet pas de forme fermée :
$$- x + {\color{red}{\int{e^{x^{2}} d x}}} = - x + {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}\right)}}$$
Par conséquent,
$$\int{\left(e^{x^{2}} - 1\right)d x} = - x + \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{\left(e^{x^{2}} - 1\right)d x} = - x + \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}+C$$
Réponse
$$$\int \left(e^{x^{2}} - 1\right)\, dx = \left(- x + \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}\right) + C$$$A