Integral de $$$e^{x^{2}} - 1$$$

La calculadora encontrará la integral/antiderivada de $$$e^{x^{2}} - 1$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(e^{x^{2}} - 1\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(e^{x^{2}} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{e^{x^{2}} d x}\right)}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$\int{e^{x^{2}} d x} - {\color{red}{\int{1 d x}}} = \int{e^{x^{2}} d x} - {\color{red}{x}}$$

Esta integral (Función error imaginaria) no tiene una forma cerrada:

$$- x + {\color{red}{\int{e^{x^{2}} d x}}} = - x + {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}\right)}}$$

Por lo tanto,

$$\int{\left(e^{x^{2}} - 1\right)d x} = - x + \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}$$

Añade la constante de integración:

$$\int{\left(e^{x^{2}} - 1\right)d x} = - x + \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}+C$$

Respuesta

$$$\int \left(e^{x^{2}} - 1\right)\, dx = \left(- x + \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly