$$$\frac{e^{- x}}{16 - 9 e^{- 2 x}}$$$ 的積分

此計算器將求出 $$$\frac{e^{- x}}{16 - 9 e^{- 2 x}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{e^{- x}}{16 - 9 e^{- 2 x}}\, dx$$$

解答

Simplify:

$${\color{red}{\int{\frac{e^{- x}}{16 - 9 e^{- 2 x}} d x}}} = {\color{red}{\int{\frac{e^{x}}{16 e^{2 x} - 9} d x}}}$$

$$$u=4 e^{x}$$$

$$$du=\left(4 e^{x}\right)^{\prime }dx = 4 e^{x} dx$$$ (步驟見»),並可得 $$$e^{x} dx = \frac{du}{4}$$$

所以,

$${\color{red}{\int{\frac{e^{x}}{16 e^{2 x} - 9} d x}}} = {\color{red}{\int{\frac{1}{4 \left(u^{2} - 9\right)} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{4}$$$$$$f{\left(u \right)} = \frac{1}{u^{2} - 9}$$$

$${\color{red}{\int{\frac{1}{4 \left(u^{2} - 9\right)} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u^{2} - 9} d u}}{4}\right)}}$$

進行部分分式分解(步驟可見 »):

$$\frac{{\color{red}{\int{\frac{1}{u^{2} - 9} d u}}}}{4} = \frac{{\color{red}{\int{\left(- \frac{1}{6 \left(u + 3\right)} + \frac{1}{6 \left(u - 3\right)}\right)d u}}}}{4}$$

逐項積分:

$$\frac{{\color{red}{\int{\left(- \frac{1}{6 \left(u + 3\right)} + \frac{1}{6 \left(u - 3\right)}\right)d u}}}}{4} = \frac{{\color{red}{\left(\int{\frac{1}{6 \left(u - 3\right)} d u} - \int{\frac{1}{6 \left(u + 3\right)} d u}\right)}}}{4}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{6}$$$$$$f{\left(u \right)} = \frac{1}{u + 3}$$$

$$\frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} - \frac{{\color{red}{\int{\frac{1}{6 \left(u + 3\right)} d u}}}}{4} = \frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{u + 3} d u}}{6}\right)}}}{4}$$

$$$v=u + 3$$$

$$$dv=\left(u + 3\right)^{\prime }du = 1 du$$$ (步驟見»),並可得 $$$du = dv$$$

因此,

$$\frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} - \frac{{\color{red}{\int{\frac{1}{u + 3} d u}}}}{24} = \frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24}$$

$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$

$$\frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24} = \frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{24}$$

回顧一下 $$$v=u + 3$$$

$$- \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{24} + \frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} = - \frac{\ln{\left(\left|{{\color{red}{\left(u + 3\right)}}}\right| \right)}}{24} + \frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{6}$$$$$$f{\left(u \right)} = \frac{1}{u - 3}$$$

$$- \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{{\color{red}{\int{\frac{1}{6 \left(u - 3\right)} d u}}}}{4} = - \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{u - 3} d u}}{6}\right)}}}{4}$$

$$$v=u - 3$$$

$$$dv=\left(u - 3\right)^{\prime }du = 1 du$$$ (步驟見»),並可得 $$$du = dv$$$

所以,

$$- \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{{\color{red}{\int{\frac{1}{u - 3} d u}}}}{24} = - \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24}$$

$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$

$$- \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24} = - \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{24}$$

回顧一下 $$$v=u - 3$$$

$$- \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{24} = - \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{\ln{\left(\left|{{\color{red}{\left(u - 3\right)}}}\right| \right)}}{24}$$

回顧一下 $$$u=4 e^{x}$$$

$$\frac{\ln{\left(\left|{-3 + {\color{red}{u}}}\right| \right)}}{24} - \frac{\ln{\left(\left|{3 + {\color{red}{u}}}\right| \right)}}{24} = \frac{\ln{\left(\left|{-3 + {\color{red}{\left(4 e^{x}\right)}}}\right| \right)}}{24} - \frac{\ln{\left(\left|{3 + {\color{red}{\left(4 e^{x}\right)}}}\right| \right)}}{24}$$

因此,

$$\int{\frac{e^{- x}}{16 - 9 e^{- 2 x}} d x} = - \frac{\ln{\left(4 e^{x} + 3 \right)}}{24} + \frac{\ln{\left(\left|{4 e^{x} - 3}\right| \right)}}{24}$$

加上積分常數:

$$\int{\frac{e^{- x}}{16 - 9 e^{- 2 x}} d x} = - \frac{\ln{\left(4 e^{x} + 3 \right)}}{24} + \frac{\ln{\left(\left|{4 e^{x} - 3}\right| \right)}}{24}+C$$

答案

$$$\int \frac{e^{- x}}{16 - 9 e^{- 2 x}}\, dx = \left(- \frac{\ln\left(4 e^{x} + 3\right)}{24} + \frac{\ln\left(\left|{4 e^{x} - 3}\right|\right)}{24}\right) + C$$$A


Please try a new game Rotatly