Integrale di $$$\frac{e^{- x}}{16 - 9 e^{- 2 x}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{e^{- x}}{16 - 9 e^{- 2 x}}\, dx$$$.
Soluzione
Simplify:
$${\color{red}{\int{\frac{e^{- x}}{16 - 9 e^{- 2 x}} d x}}} = {\color{red}{\int{\frac{e^{x}}{16 e^{2 x} - 9} d x}}}$$
Sia $$$u=4 e^{x}$$$.
Quindi $$$du=\left(4 e^{x}\right)^{\prime }dx = 4 e^{x} dx$$$ (i passaggi si possono vedere »), e si ha che $$$e^{x} dx = \frac{du}{4}$$$.
Pertanto,
$${\color{red}{\int{\frac{e^{x}}{16 e^{2 x} - 9} d x}}} = {\color{red}{\int{\frac{1}{4 \left(u^{2} - 9\right)} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{4}$$$ e $$$f{\left(u \right)} = \frac{1}{u^{2} - 9}$$$:
$${\color{red}{\int{\frac{1}{4 \left(u^{2} - 9\right)} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u^{2} - 9} d u}}{4}\right)}}$$
Esegui la scomposizione in fratti semplici (i passaggi possono essere visualizzati »):
$$\frac{{\color{red}{\int{\frac{1}{u^{2} - 9} d u}}}}{4} = \frac{{\color{red}{\int{\left(- \frac{1}{6 \left(u + 3\right)} + \frac{1}{6 \left(u - 3\right)}\right)d u}}}}{4}$$
Integra termine per termine:
$$\frac{{\color{red}{\int{\left(- \frac{1}{6 \left(u + 3\right)} + \frac{1}{6 \left(u - 3\right)}\right)d u}}}}{4} = \frac{{\color{red}{\left(\int{\frac{1}{6 \left(u - 3\right)} d u} - \int{\frac{1}{6 \left(u + 3\right)} d u}\right)}}}{4}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{6}$$$ e $$$f{\left(u \right)} = \frac{1}{u + 3}$$$:
$$\frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} - \frac{{\color{red}{\int{\frac{1}{6 \left(u + 3\right)} d u}}}}{4} = \frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{u + 3} d u}}{6}\right)}}}{4}$$
Sia $$$v=u + 3$$$.
Quindi $$$dv=\left(u + 3\right)^{\prime }du = 1 du$$$ (i passaggi si possono vedere »), e si ha che $$$du = dv$$$.
L'integrale può essere riscritto come
$$\frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} - \frac{{\color{red}{\int{\frac{1}{u + 3} d u}}}}{24} = \frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24}$$
L'integrale di $$$\frac{1}{v}$$$ è $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24} = \frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{24}$$
Ricordiamo che $$$v=u + 3$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{24} + \frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4} = - \frac{\ln{\left(\left|{{\color{red}{\left(u + 3\right)}}}\right| \right)}}{24} + \frac{\int{\frac{1}{6 \left(u - 3\right)} d u}}{4}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{6}$$$ e $$$f{\left(u \right)} = \frac{1}{u - 3}$$$:
$$- \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{{\color{red}{\int{\frac{1}{6 \left(u - 3\right)} d u}}}}{4} = - \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{u - 3} d u}}{6}\right)}}}{4}$$
Sia $$$v=u - 3$$$.
Quindi $$$dv=\left(u - 3\right)^{\prime }du = 1 du$$$ (i passaggi si possono vedere »), e si ha che $$$du = dv$$$.
L'integrale diventa
$$- \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{{\color{red}{\int{\frac{1}{u - 3} d u}}}}{24} = - \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24}$$
L'integrale di $$$\frac{1}{v}$$$ è $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24} = - \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{24}$$
Ricordiamo che $$$v=u - 3$$$:
$$- \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{24} = - \frac{\ln{\left(\left|{u + 3}\right| \right)}}{24} + \frac{\ln{\left(\left|{{\color{red}{\left(u - 3\right)}}}\right| \right)}}{24}$$
Ricordiamo che $$$u=4 e^{x}$$$:
$$\frac{\ln{\left(\left|{-3 + {\color{red}{u}}}\right| \right)}}{24} - \frac{\ln{\left(\left|{3 + {\color{red}{u}}}\right| \right)}}{24} = \frac{\ln{\left(\left|{-3 + {\color{red}{\left(4 e^{x}\right)}}}\right| \right)}}{24} - \frac{\ln{\left(\left|{3 + {\color{red}{\left(4 e^{x}\right)}}}\right| \right)}}{24}$$
Pertanto,
$$\int{\frac{e^{- x}}{16 - 9 e^{- 2 x}} d x} = - \frac{\ln{\left(4 e^{x} + 3 \right)}}{24} + \frac{\ln{\left(\left|{4 e^{x} - 3}\right| \right)}}{24}$$
Aggiungi la costante di integrazione:
$$\int{\frac{e^{- x}}{16 - 9 e^{- 2 x}} d x} = - \frac{\ln{\left(4 e^{x} + 3 \right)}}{24} + \frac{\ln{\left(\left|{4 e^{x} - 3}\right| \right)}}{24}+C$$
Risposta
$$$\int \frac{e^{- x}}{16 - 9 e^{- 2 x}}\, dx = \left(- \frac{\ln\left(4 e^{x} + 3\right)}{24} + \frac{\ln\left(\left|{4 e^{x} - 3}\right|\right)}{24}\right) + C$$$A