$$$- a^{2} - y^{2} + 1$$$$$$y$$$ 的積分

此計算器會求出 $$$- a^{2} - y^{2} + 1$$$$$$y$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(- a^{2} - y^{2} + 1\right)\, dy$$$

解答

逐項積分:

$${\color{red}{\int{\left(- a^{2} - y^{2} + 1\right)d y}}} = {\color{red}{\left(\int{1 d y} - \int{a^{2} d y} - \int{y^{2} d y}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, dy = c y$$$

$$- \int{a^{2} d y} - \int{y^{2} d y} + {\color{red}{\int{1 d y}}} = - \int{a^{2} d y} - \int{y^{2} d y} + {\color{red}{y}}$$

配合 $$$c=a^{2}$$$,應用常數法則 $$$\int c\, dy = c y$$$

$$y - \int{y^{2} d y} - {\color{red}{\int{a^{2} d y}}} = y - \int{y^{2} d y} - {\color{red}{a^{2} y}}$$

套用冪次法則 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$- a^{2} y + y - {\color{red}{\int{y^{2} d y}}}=- a^{2} y + y - {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- a^{2} y + y - {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$

因此,

$$\int{\left(- a^{2} - y^{2} + 1\right)d y} = - a^{2} y - \frac{y^{3}}{3} + y$$

化簡:

$$\int{\left(- a^{2} - y^{2} + 1\right)d y} = y \left(- a^{2} - \frac{y^{2}}{3} + 1\right)$$

加上積分常數:

$$\int{\left(- a^{2} - y^{2} + 1\right)d y} = y \left(- a^{2} - \frac{y^{2}}{3} + 1\right)+C$$

答案

$$$\int \left(- a^{2} - y^{2} + 1\right)\, dy = y \left(- a^{2} - \frac{y^{2}}{3} + 1\right) + C$$$A


Please try a new game Rotatly