Ολοκλήρωμα της $$$- a^{2} - y^{2} + 1$$$ ως προς $$$y$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$- a^{2} - y^{2} + 1$$$ ως προς $$$y$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(- a^{2} - y^{2} + 1\right)\, dy$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(- a^{2} - y^{2} + 1\right)d y}}} = {\color{red}{\left(\int{1 d y} - \int{a^{2} d y} - \int{y^{2} d y}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dy = c y$$$ με $$$c=1$$$:

$$- \int{a^{2} d y} - \int{y^{2} d y} + {\color{red}{\int{1 d y}}} = - \int{a^{2} d y} - \int{y^{2} d y} + {\color{red}{y}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dy = c y$$$ με $$$c=a^{2}$$$:

$$y - \int{y^{2} d y} - {\color{red}{\int{a^{2} d y}}} = y - \int{y^{2} d y} - {\color{red}{a^{2} y}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:

$$- a^{2} y + y - {\color{red}{\int{y^{2} d y}}}=- a^{2} y + y - {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- a^{2} y + y - {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$

Επομένως,

$$\int{\left(- a^{2} - y^{2} + 1\right)d y} = - a^{2} y - \frac{y^{3}}{3} + y$$

Απλοποιήστε:

$$\int{\left(- a^{2} - y^{2} + 1\right)d y} = y \left(- a^{2} - \frac{y^{2}}{3} + 1\right)$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(- a^{2} - y^{2} + 1\right)d y} = y \left(- a^{2} - \frac{y^{2}}{3} + 1\right)+C$$

Απάντηση

$$$\int \left(- a^{2} - y^{2} + 1\right)\, dy = y \left(- a^{2} - \frac{y^{2}}{3} + 1\right) + C$$$A


Please try a new game Rotatly