Integrale di $$$- a^{2} - y^{2} + 1$$$ rispetto a $$$y$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(- a^{2} - y^{2} + 1\right)\, dy$$$.
Soluzione
Integra termine per termine:
$${\color{red}{\int{\left(- a^{2} - y^{2} + 1\right)d y}}} = {\color{red}{\left(\int{1 d y} - \int{a^{2} d y} - \int{y^{2} d y}\right)}}$$
Applica la regola della costante $$$\int c\, dy = c y$$$ con $$$c=1$$$:
$$- \int{a^{2} d y} - \int{y^{2} d y} + {\color{red}{\int{1 d y}}} = - \int{a^{2} d y} - \int{y^{2} d y} + {\color{red}{y}}$$
Applica la regola della costante $$$\int c\, dy = c y$$$ con $$$c=a^{2}$$$:
$$y - \int{y^{2} d y} - {\color{red}{\int{a^{2} d y}}} = y - \int{y^{2} d y} - {\color{red}{a^{2} y}}$$
Applica la regola della potenza $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:
$$- a^{2} y + y - {\color{red}{\int{y^{2} d y}}}=- a^{2} y + y - {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- a^{2} y + y - {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$
Pertanto,
$$\int{\left(- a^{2} - y^{2} + 1\right)d y} = - a^{2} y - \frac{y^{3}}{3} + y$$
Semplifica:
$$\int{\left(- a^{2} - y^{2} + 1\right)d y} = y \left(- a^{2} - \frac{y^{2}}{3} + 1\right)$$
Aggiungi la costante di integrazione:
$$\int{\left(- a^{2} - y^{2} + 1\right)d y} = y \left(- a^{2} - \frac{y^{2}}{3} + 1\right)+C$$
Risposta
$$$\int \left(- a^{2} - y^{2} + 1\right)\, dy = y \left(- a^{2} - \frac{y^{2}}{3} + 1\right) + C$$$A