$$$\frac{\cos{\left(x \right)}}{2}$$$ 的積分
您的輸入
求$$$\int \frac{\cos{\left(x \right)}}{2}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\cos{\left(x \right)} d x}}{2}\right)}}$$
餘弦函數的積分為 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(x \right)} d x}}}}{2} = \frac{{\color{red}{\sin{\left(x \right)}}}}{2}$$
因此,
$$\int{\frac{\cos{\left(x \right)}}{2} d x} = \frac{\sin{\left(x \right)}}{2}$$
加上積分常數:
$$\int{\frac{\cos{\left(x \right)}}{2} d x} = \frac{\sin{\left(x \right)}}{2}+C$$
答案
$$$\int \frac{\cos{\left(x \right)}}{2}\, dx = \frac{\sin{\left(x \right)}}{2} + C$$$A