Integral de $$$\frac{\cos{\left(x \right)}}{2}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{\cos{\left(x \right)}}{2}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\cos{\left(x \right)} d x}}{2}\right)}}$$
La integral del coseno es $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(x \right)} d x}}}}{2} = \frac{{\color{red}{\sin{\left(x \right)}}}}{2}$$
Por lo tanto,
$$\int{\frac{\cos{\left(x \right)}}{2} d x} = \frac{\sin{\left(x \right)}}{2}$$
Añade la constante de integración:
$$\int{\frac{\cos{\left(x \right)}}{2} d x} = \frac{\sin{\left(x \right)}}{2}+C$$
Respuesta
$$$\int \frac{\cos{\left(x \right)}}{2}\, dx = \frac{\sin{\left(x \right)}}{2} + C$$$A