Integral dari $$$\frac{\cos{\left(x \right)}}{2}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\cos{\left(x \right)}}{2}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\cos{\left(x \right)} d x}}{2}\right)}}$$
Integral dari kosinus adalah $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(x \right)} d x}}}}{2} = \frac{{\color{red}{\sin{\left(x \right)}}}}{2}$$
Oleh karena itu,
$$\int{\frac{\cos{\left(x \right)}}{2} d x} = \frac{\sin{\left(x \right)}}{2}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\cos{\left(x \right)}}{2} d x} = \frac{\sin{\left(x \right)}}{2}+C$$
Jawaban
$$$\int \frac{\cos{\left(x \right)}}{2}\, dx = \frac{\sin{\left(x \right)}}{2} + C$$$A