$$$11^{- k} 4^{k}$$$ 的積分

此計算器將求出 $$$11^{- k} 4^{k}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int 11^{- k} 4^{k}\, dk$$$

解答

已將輸入重寫為:$$$\int{11^{- k} 4^{k} d k}=\int{\left(\frac{4}{11}\right)^{k} d k}$$$

Apply the exponential rule $$$\int{a^{k} d k} = \frac{a^{k}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{4}{11}$$$:

$${\color{red}{\int{\left(\frac{4}{11}\right)^{k} d k}}} = {\color{red}{\frac{\left(\frac{4}{11}\right)^{k}}{\ln{\left(\frac{4}{11} \right)}}}}$$

因此,

$$\int{\left(\frac{4}{11}\right)^{k} d k} = \frac{\left(\frac{4}{11}\right)^{k}}{\ln{\left(\frac{4}{11} \right)}}$$

化簡:

$$\int{\left(\frac{4}{11}\right)^{k} d k} = \frac{\left(\frac{4}{11}\right)^{k}}{- \ln{\left(11 \right)} + 2 \ln{\left(2 \right)}}$$

加上積分常數:

$$\int{\left(\frac{4}{11}\right)^{k} d k} = \frac{\left(\frac{4}{11}\right)^{k}}{- \ln{\left(11 \right)} + 2 \ln{\left(2 \right)}}+C$$

答案

$$$\int 11^{- k} 4^{k}\, dk = \frac{\left(\frac{4}{11}\right)^{k}}{- \ln\left(11\right) + 2 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly