$$$11^{- k} 4^{k}$$$ 的积分

该计算器将求出$$$11^{- k} 4^{k}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int 11^{- k} 4^{k}\, dk$$$

解答

输入已重写为:$$$\int{11^{- k} 4^{k} d k}=\int{\left(\frac{4}{11}\right)^{k} d k}$$$

Apply the exponential rule $$$\int{a^{k} d k} = \frac{a^{k}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{4}{11}$$$:

$${\color{red}{\int{\left(\frac{4}{11}\right)^{k} d k}}} = {\color{red}{\frac{\left(\frac{4}{11}\right)^{k}}{\ln{\left(\frac{4}{11} \right)}}}}$$

因此,

$$\int{\left(\frac{4}{11}\right)^{k} d k} = \frac{\left(\frac{4}{11}\right)^{k}}{\ln{\left(\frac{4}{11} \right)}}$$

化简:

$$\int{\left(\frac{4}{11}\right)^{k} d k} = \frac{\left(\frac{4}{11}\right)^{k}}{- \ln{\left(11 \right)} + 2 \ln{\left(2 \right)}}$$

加上积分常数:

$$\int{\left(\frac{4}{11}\right)^{k} d k} = \frac{\left(\frac{4}{11}\right)^{k}}{- \ln{\left(11 \right)} + 2 \ln{\left(2 \right)}}+C$$

答案

$$$\int 11^{- k} 4^{k}\, dk = \frac{\left(\frac{4}{11}\right)^{k}}{- \ln\left(11\right) + 2 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly