Intégrale de $$$11^{- k} 4^{k}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int 11^{- k} 4^{k}\, dk$$$.
Solution
L’entrée est réécrite : $$$\int{11^{- k} 4^{k} d k}=\int{\left(\frac{4}{11}\right)^{k} d k}$$$.
Apply the exponential rule $$$\int{a^{k} d k} = \frac{a^{k}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{4}{11}$$$:
$${\color{red}{\int{\left(\frac{4}{11}\right)^{k} d k}}} = {\color{red}{\frac{\left(\frac{4}{11}\right)^{k}}{\ln{\left(\frac{4}{11} \right)}}}}$$
Par conséquent,
$$\int{\left(\frac{4}{11}\right)^{k} d k} = \frac{\left(\frac{4}{11}\right)^{k}}{\ln{\left(\frac{4}{11} \right)}}$$
Simplifier:
$$\int{\left(\frac{4}{11}\right)^{k} d k} = \frac{\left(\frac{4}{11}\right)^{k}}{- \ln{\left(11 \right)} + 2 \ln{\left(2 \right)}}$$
Ajouter la constante d'intégration :
$$\int{\left(\frac{4}{11}\right)^{k} d k} = \frac{\left(\frac{4}{11}\right)^{k}}{- \ln{\left(11 \right)} + 2 \ln{\left(2 \right)}}+C$$
Réponse
$$$\int 11^{- k} 4^{k}\, dk = \frac{\left(\frac{4}{11}\right)^{k}}{- \ln\left(11\right) + 2 \ln\left(2\right)} + C$$$A