Integrale di $$$11^{- k} 4^{k}$$$

La calcolatrice troverà l'integrale/primitiva di $$$11^{- k} 4^{k}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int 11^{- k} 4^{k}\, dk$$$.

Soluzione

L'input viene riscritto: $$$\int{11^{- k} 4^{k} d k}=\int{\left(\frac{4}{11}\right)^{k} d k}$$$.

Apply the exponential rule $$$\int{a^{k} d k} = \frac{a^{k}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{4}{11}$$$:

$${\color{red}{\int{\left(\frac{4}{11}\right)^{k} d k}}} = {\color{red}{\frac{\left(\frac{4}{11}\right)^{k}}{\ln{\left(\frac{4}{11} \right)}}}}$$

Pertanto,

$$\int{\left(\frac{4}{11}\right)^{k} d k} = \frac{\left(\frac{4}{11}\right)^{k}}{\ln{\left(\frac{4}{11} \right)}}$$

Semplifica:

$$\int{\left(\frac{4}{11}\right)^{k} d k} = \frac{\left(\frac{4}{11}\right)^{k}}{- \ln{\left(11 \right)} + 2 \ln{\left(2 \right)}}$$

Aggiungi la costante di integrazione:

$$\int{\left(\frac{4}{11}\right)^{k} d k} = \frac{\left(\frac{4}{11}\right)^{k}}{- \ln{\left(11 \right)} + 2 \ln{\left(2 \right)}}+C$$

Risposta

$$$\int 11^{- k} 4^{k}\, dk = \frac{\left(\frac{4}{11}\right)^{k}}{- \ln\left(11\right) + 2 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly