$$$\frac{2 x^{4}}{x - 1}$$$ 的積分

此計算器將求出 $$$\frac{2 x^{4}}{x - 1}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{2 x^{4}}{x - 1}\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$$$$f{\left(x \right)} = \frac{x^{4}}{x - 1}$$$

$${\color{red}{\int{\frac{2 x^{4}}{x - 1} d x}}} = {\color{red}{\left(2 \int{\frac{x^{4}}{x - 1} d x}\right)}}$$

由於分子次數不小於分母次數,進行多項式長除法(步驟見»):

$$2 {\color{red}{\int{\frac{x^{4}}{x - 1} d x}}} = 2 {\color{red}{\int{\left(x^{3} + x^{2} + x + 1 + \frac{1}{x - 1}\right)d x}}}$$

逐項積分:

$$2 {\color{red}{\int{\left(x^{3} + x^{2} + x + 1 + \frac{1}{x - 1}\right)d x}}} = 2 {\color{red}{\left(\int{1 d x} + \int{x d x} + \int{x^{2} d x} + \int{x^{3} d x} + \int{\frac{1}{x - 1} d x}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$

$$2 \int{x d x} + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{1 d x}}} = 2 \int{x d x} + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{x}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$2 x + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{x d x}}}=2 x + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=2 x + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$x^{2} + 2 x + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{x^{2} d x}}}=x^{2} + 2 x + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=x^{2} + 2 x + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=3$$$

$$\frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{x^{3} d x}}}=\frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

$$$u=x - 1$$$

$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$

所以,

$$\frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 {\color{red}{\int{\frac{1}{x - 1} d x}}} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$\frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回顧一下 $$$u=x - 1$$$

$$\frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}$$

因此,

$$\int{\frac{2 x^{4}}{x - 1} d x} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln{\left(\left|{x - 1}\right| \right)}$$

加上積分常數:

$$\int{\frac{2 x^{4}}{x - 1} d x} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln{\left(\left|{x - 1}\right| \right)}+C$$

答案

$$$\int \frac{2 x^{4}}{x - 1}\, dx = \left(\frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly