Integrale di $$$\frac{2 x^{4}}{x - 1}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{2 x^{4}}{x - 1}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ e $$$f{\left(x \right)} = \frac{x^{4}}{x - 1}$$$:
$${\color{red}{\int{\frac{2 x^{4}}{x - 1} d x}}} = {\color{red}{\left(2 \int{\frac{x^{4}}{x - 1} d x}\right)}}$$
Poiché il grado del numeratore non è inferiore al grado del denominatore, esegui la divisione lunga dei polinomi (i passaggi sono visibili »):
$$2 {\color{red}{\int{\frac{x^{4}}{x - 1} d x}}} = 2 {\color{red}{\int{\left(x^{3} + x^{2} + x + 1 + \frac{1}{x - 1}\right)d x}}}$$
Integra termine per termine:
$$2 {\color{red}{\int{\left(x^{3} + x^{2} + x + 1 + \frac{1}{x - 1}\right)d x}}} = 2 {\color{red}{\left(\int{1 d x} + \int{x d x} + \int{x^{2} d x} + \int{x^{3} d x} + \int{\frac{1}{x - 1} d x}\right)}}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=1$$$:
$$2 \int{x d x} + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{1 d x}}} = 2 \int{x d x} + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{x}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$2 x + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{x d x}}}=2 x + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=2 x + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:
$$x^{2} + 2 x + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{x^{2} d x}}}=x^{2} + 2 x + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=x^{2} + 2 x + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=3$$$:
$$\frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{x^{3} d x}}}=\frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Sia $$$u=x - 1$$$.
Quindi $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = du$$$.
Quindi,
$$\frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 {\color{red}{\int{\frac{1}{x - 1} d x}}} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Ricordiamo che $$$u=x - 1$$$:
$$\frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}$$
Pertanto,
$$\int{\frac{2 x^{4}}{x - 1} d x} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln{\left(\left|{x - 1}\right| \right)}$$
Aggiungi la costante di integrazione:
$$\int{\frac{2 x^{4}}{x - 1} d x} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln{\left(\left|{x - 1}\right| \right)}+C$$
Risposta
$$$\int \frac{2 x^{4}}{x - 1}\, dx = \left(\frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A