$$$\frac{2 x^{4}}{x - 1}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{2 x^{4}}{x - 1}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=2$$$ ve $$$f{\left(x \right)} = \frac{x^{4}}{x - 1}$$$ ile uygula:
$${\color{red}{\int{\frac{2 x^{4}}{x - 1} d x}}} = {\color{red}{\left(2 \int{\frac{x^{4}}{x - 1} d x}\right)}}$$
Payın derecesi paydanın derecesinden küçük olmadığından, polinom uzun bölmesi uygulayın (adımlar » görülebilir):
$$2 {\color{red}{\int{\frac{x^{4}}{x - 1} d x}}} = 2 {\color{red}{\int{\left(x^{3} + x^{2} + x + 1 + \frac{1}{x - 1}\right)d x}}}$$
Her terimin integralini alın:
$$2 {\color{red}{\int{\left(x^{3} + x^{2} + x + 1 + \frac{1}{x - 1}\right)d x}}} = 2 {\color{red}{\left(\int{1 d x} + \int{x d x} + \int{x^{2} d x} + \int{x^{3} d x} + \int{\frac{1}{x - 1} d x}\right)}}$$
$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:
$$2 \int{x d x} + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{1 d x}}} = 2 \int{x d x} + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{x}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=1$$$ ile uygulayın:
$$2 x + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{x d x}}}=2 x + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=2 x + 2 \int{x^{2} d x} + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:
$$x^{2} + 2 x + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{x^{2} d x}}}=x^{2} + 2 x + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=x^{2} + 2 x + 2 \int{x^{3} d x} + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=3$$$ ile uygulayın:
$$\frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{x^{3} d x}}}=\frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
$$$u=x - 1$$$ olsun.
Böylece $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (adımlar » görülebilir) ve $$$dx = du$$$ elde ederiz.
Dolayısıyla,
$$\frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 {\color{red}{\int{\frac{1}{x - 1} d x}}} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Hatırlayın ki $$$u=x - 1$$$:
$$\frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}$$
Dolayısıyla,
$$\int{\frac{2 x^{4}}{x - 1} d x} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln{\left(\left|{x - 1}\right| \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{2 x^{4}}{x - 1} d x} = \frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln{\left(\left|{x - 1}\right| \right)}+C$$
Cevap
$$$\int \frac{2 x^{4}}{x - 1}\, dx = \left(\frac{x^{4}}{2} + \frac{2 x^{3}}{3} + x^{2} + 2 x + 2 \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A