$$$\frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}}\, dx$$$。
解答
令 $$$u=2 x$$$。
則 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$。
因此,
$${\color{red}{\int{\frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{2 \sin{\left(2 u \right)}} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \frac{\sin{\left(u \right)}}{\sin{\left(2 u \right)}}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{2 \sin{\left(2 u \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{\sin{\left(u \right)}}{\sin{\left(2 u \right)}} d u}}{2}\right)}}$$
重寫被積函數:
$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\sin{\left(2 u \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{1}{2 \cos{\left(u \right)}} d u}}}}{2}$$
使用公式 $$$\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right)$$$ 將餘弦用正弦表示,然後使用二倍角公式 $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$ 將正弦改寫。:
$$\frac{{\color{red}{\int{\frac{1}{2 \cos{\left(u \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{1}{4 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}$$
將分子與分母同時乘以 $$$\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right)$$$:
$$\frac{{\color{red}{\int{\frac{1}{4 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{4 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}$$
令 $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$。
則 $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (步驟見»),並可得 $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$。
該積分變為
$$\frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{4 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{2}$$
套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(v \right)} = \frac{1}{v}$$$:
$$\frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{2} = \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}}{2}$$
$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{v} d v}}}}{4} = \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{4}$$
回顧一下 $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$:
$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{4} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{4}$$
回顧一下 $$$u=2 x$$$:
$$\frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)}}{4} = \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(2 x\right)}}}{2} \right)}}\right| \right)}}{4}$$
因此,
$$\int{\frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}} d x} = \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{4}$$
加上積分常數:
$$\int{\frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}} d x} = \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{4}+C$$
答案
$$$\int \frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}}\, dx = \frac{\ln\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right|\right)}{4} + C$$$A